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We obtained a theoretical description of rotating superfluid in the 3He-A phase

in two dimensions. Experimentally, it is known that the vortices appear under

rotation, so by requiring our order parameter to reflect that, we derived the form

of the excitation eigenstates. Then we considered the presence of a magnetic field

along the rotation axis, and found that the excitations evolve adiabatically with an

extra phase (Berry phase) besides the dynamical one. Finally we considered the

spin current carried by the excitations and found that it is quantized under certain

conditions.
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I. INTRODUCTION

3He is among the rare type of systems that have the unique property of conserving

quantum effects usually found only at microscopic scales when looking at it macroscopically.

It has the property of remaining liquid even at absolute zero, and has several phases at

low temperatures, in particular the 3He-A phase around 3 mK. In these phases, the liquid

enters a superfluid state, which supports topological defects. These defects are created

spontaneously when the liquid is set to a rotation, creating different types of singularities,

like point singularities, vortex lines and domain walls, as seen experimentally. In this essay

we will describe a specific property of the A-phase when set in rotation, which is the spin

transport of Bloch quasiparticles in the presence of a magnetic field, assuming a square

lattice of line vortices.

The first part consists of deriving a Hamiltonian for the quasiparticle excitations of the

3He-A phase in helium superfluid, using that the unbroken phase of 3He has a symmetry

group SO(3)S ⊗ SO(3)L ⊗ U(1)ω. Writing the most general form of the free energy to 4th

order in the order parameter, we get an expression for the order parameter, which we then

use to motivate the form of the Hamiltonian for the excitations.

The second part consists in analyzing what happens when we set 3He-A to a rotation in

two dimensions. Above a critical velocity Ωc, we get vortices that introduce a phase in the

order parameter. This is shown in experiments in rotating 3He-A, like the Finnish-Soviet

R.O.T.A proyect [6]. For our calculations we assume a square lattice of vortices. In the

presence of a magnetic field with a homogeneous gradient, we see that the evolution of the

excitations is given by the usual dynamical phase plus a new phase (Berry phase), induced by

the time dependent Hamiltonian, whose time dependency comes from the applied magnetic

field. Finally, we use these results to calculate the Spin current carried by the excitations

and find that it is quantized, and related to the Chern number of the n-th band.

II. DESCRIPTION OF SUPERFLUID 3HE-A

The model that we use to describe superfluid 3He is that of Cooper pairs, that is, the

quasiparticles couple into pairs that form a non-interacting gas. Normal Cooper pairs possess

no angular momentum around the center of mass, so by antisymmetry they must have
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quantum numbers S=0, L=0. In 3He however, the pairs are in a p-wave state, so they have

quantum numbers S=1, L=1.

This way, the symmetry group of 3He in the unbroken phase must have, in the approxi-

mation of small spin-orbit coupling, a symmetry group given by

G = SO(3)S ⊗ SO(3)L ⊗ U(1)ω (1)

Now that we know the symmetry group of 3He, we set out to find the form of the order

parameter. Writing the most general form on the free energy compatible with our symmetry

group and minimizing it, we arrive at the form for the order parameter for the 3He-A phase

(see Apendix I for derivation):

Aαi = ∆0d̂α(x̂i + iŷi)

where d̂ is the spin vector of the pair and l̂ = x̂× ŷ is their orbital angular momentum.

Following [1], we can see that the 3He-A phase has a residual symmetry group H which is a

subgroup of the original given by

H = SO(2)S × U(1)combined × Z2 (2)

To understand the origin of eq. (2), we see that we can still rotate around d̂, so that

gives SO(2)S. The second factor is the gauge transformation (global) U(1) with a parameter

Φ together with a rotation about the l̂ axis by an angle θ3 that matches Φ. Lastly, a spin

rotation around an axis perpendicular to d̂ by an angle π can by compensated by a gauge

transformation with Φ = π, which yields the last factor.

Now that we’ve found the form of the order parameter for the 3He-A phase, we seek to

find a hamiltonian that describes the phase.

A. Hamiltonian for 3He-A

We start by writing an action for non-relativistic fermions around the fermi energy that

is compatible with the symmetry group of eq. (1)(the unbroken phase). We have

S =
∫
dtdDxψ†

α(x)(i∂t − ε(p̂))ψα(x)− λ

2

∫
dtdDxψ†

σ(x)piψ
†
τ (x)ψτ (y)piψσ(y)
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where ψα(x) is a Fermion field with spin α =↑, ↓, pi = −i∂i and ε(p̂) =
p̂2−p2F

2m

Introducing the auxiliary fields ∆i
στ and (∆†)iστ through the Hubbard-Stratonovich trans-

formation to get rid of the quartic term, we get

S =
∫
dtdDxψ†

α(x)(i∂t − ε(p̂))ψα(x)− 1

2

∫
dtdDxdDy

[
ψσ(x)∆†

στ (x,y)ψτ (y) + h.c.
]

(3)

The auxiliary fields are directly related to the order parameter of 3He-A. We want this

action to describe the 3He-A phase, and we still haven’t specified how the auxiliary fields

transform. Out of the original symmetry of eq. (1) that S satisfied, we should have, after

spontaneous symmetry breaking, only the group given by eq. (2). This can be achieved by

defining [1]

∆στ (x,y) =
∫ dDp

2πD
ei(x−y)·p∆στ (r,p)

Where r = (x + y)/2. The matrix ∆i
στ (r,p) is defined in terms of our order parameter

∆στ (r,p) = Aαi(σ
α)στ iσypi (4)

where Aαi is the order parameter from the G-L theory we found before.

We can go from the Lagrangian given by eqn. 3 to the Hamiltonian through the usual

Legendre transform H = ψ̇α
δL

δ∂0ψα
+ h.c.− L. We get

H =
∫
dtdDxψ†

α(x)ε(p̂))ψα(x) +
1

2

∫
dtdDxdDy

[
ψσ(x)(∆†)iστ (x,y)ψτ (y) + h.c.

]
Following [2], if we are in 2 dimensions and we make the angular momentum of all Cooper

pairs point along the ẑ-axis, in the presence of a spin-orbit interaction d̂ will also point in

the ẑ-axis. Then using eq. (4) we can write

∆στ (r,p) = iσy(σ3)στφ(r)(px + ipy)

This way, the Hamiltonian for the 3He-A phase in 2 dimensions is

HMF =
∫
dtd2xψ†

α(x)ε(p̂))ψα(x)+
1

2

∫
dtd2xd2y

[
ψ↑(x)∆†

A(x,y)ψ↓(y) + ψ†
↑(x)∆A(x,y)ψ†

↓(y)
]

(5)

with ∆A(x,y) = 1/2 Tr[σx∆(x,y)]
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B. 3He-A in a rotating cilinder

At T=0 and with the superfluid at rest, there won’t be any excitations if we assume a

finite energy gap in the spectrum. That’s why we need to consider a cilinder of rotating

superfluid 3He-A, which for a velocity Ω > Ωcritical will produce excitations and thus vortices.

Under a rotation, the Hamiltonian transforms as

HRot = HMF + L̂ · Ω̂

where L̂ is the angular momentum. From this we obtain (without writing down the

pairing terms)

HRot =
∫
dtdDxψ†

α(~x)(ε(p̂)−p̂·(~Ω×~x))ψα(~x) =
∫
dtdDxψ†

α(~x)[ε(p̂−m(~Ω×~x))−m
2

(~Ω× ~x)2)]ψα(~x)

In a typical experiment, we can neglect the m
2
(~Ω×~x)2 term or introduce a parabolic trap

[4]. This way, the hamiltonian for rotating superfluid turns out to be

HRot =
∫
dtdDxψ†

α(x)ε(p̂−m(Ω̂× x̂))ψα(x) +
1

2

∫
dtdDxdDy

[
ψ↑(x)∆†

A(x,y)ψ↓(y) + h.c.
]

(6)

Now that the fluid is rotating, we see that for a given p > pF there will be a critical

velocity Ωc such that ε(p̂−m(~Ωc × ~x)) = ε(p̂F ), thus we’ll get excitations.

C. Vortices and the vector potential

We see in eq. (6) that the rotation has induced a vector potential on the Hamiltonian

much like an electromagnetic one would. For a general vector potential, we know that if we

move around a curve in space, the fields are transformed by a phase given by the holonomy

group associated with the vector potential [5]. In fiber bundle language, the vector potential

is a connection on our real space that takes values on the gauge group, and the fields live

on the associated bundle, which is a U(1) vector space. The gauge group are the rotations

around the ẑ axis which is SO(2) ∼ U(1). The holonomy group will depend on the topology

of the fibre (for example, for a moebius strip it would be Z2). In our case, we want our

vector potential to induce vortices, so we impose that our holonomy group be Z (a vortex
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essentially is a topological defect, in the sense that when we go around it the field acquires

a non trivial phase).

We have, for a general vector potential A(x), that the field transforms like

ψ(Γ(~x)) = D(e−i
∫
Γ
~A·d~Γ)ψ̃(Γ(~x)) (7)

Where Γ is a general path in space, ψ̃(Γ(~x)) is the gauge invariant part of the field (it’s

determined by fixing the gauge), and D is a representation of the gauge group SO(2) into

the associated vector bundle U(1), which is just D(eiθσ3) = ei
θ
2

Because the order parameter is of the form ∆A ∼< ψ(x)ψ(y) >, using eq. (7) we get the

following form for the order parameter

∆A(x̂, ŷ) = e
− i

2
[
∮
Γx

Â·dΓ̂+
∮
Γy

Â·dΓ̂]
∆̃A(x̂, ŷ)

where ∆̃A(x̂, ŷ) is the gauge invariant part (determined by fixing the gauge). If A(x) is

integrable, then we get no phase shift and thus there are no vortices. Thus we want A(x)

to have a net circulation, so we impose

~∇× ~A = 2π
∑
i

δ(2)(~x− ~ri) (8)

This eq. represents a lattice of vortices of strength n=1, where the ~ri are the position of

each vortex and form a square lattice7 We can then write the order parameter as8

∆A(~x, ~y) = e−
i
2
[ϕ(~x)+ϕ(~y)]∆̃A(~x, ~y) (9)

So far, we haven’t related eq. (8) to our actual vector potential, which is ~A(~x) = m(~Ω×~x).

Introducing this into eq. 8, we get

~∇× ~A = 2m~Ω = 2π
∑
i

δ(2)(~x− ~ri) (10)

If we calculate the flux through a lattice cell of side a, we get the condition a =
√

π
Ωm

for

the lattice spacing (According to [6], for R=2.5mm and Ω = 1rad/s there are approximately

600 vortex lines). With the help of eq. (9), we can write our hamiltonian as

H(p̂, ~x, ~y) =

 ε(p̂−mR)δ(~x− ~y) ∆̃A(~x, ~y)e−
i
2
[ϕ(~x)+ϕ(~y)]

−∆̃A(~x, ~y)e−
i
2
[ϕ(~x)+ϕ(~y)] −ε(p̂−mR)δ(~x− ~y)

 (11)
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where we introduce the Nambu representation, in which Ψ ≡ (ψ↑, ψ
†
↓)
T , and the complete

Hamiltonian is given by

Hrot =
∫
dDxdDyΨ†(~x)H(p̂, ~x, ~y)Ψ(~y)

Following [3], we diagonalize H in the spin indices by introducing a Bogoliubov-de Gennes

transformation, resulting in

∫
d2yH(p̂, ~x, ~y)ΦE(~y) = EΦE(~x)

Where the ΦE(~x) are linear combinations of the original fields. We can obtain properties

of the eigenstates ΦE(~x) looking at the symmetry of the vortex lattice. Following [2], we can

define a translation operator given by

Tδr = eiδr·(p̂+~Aτ3) (12)

where τ3 is the third Pauli matrix in the Nambu (particle-hole) space9. It can be shown

that the operators Texa and Teya commute withH(p̂, ~x, ~y) but not with each other. This non-

commutativity comes from the fact that we are enclosing only one vortex in the translation

path (see Apendix C), so we define new operators Te′xd
≡ Texa+eya and Te′yd

≡ Texa−eya,

where d =
√

2a. These operators satisfy

[H(p̂, ~x, ~y), Tδr] = [Te′xa
, Te′ya

] = 0

Therefore, the eigenstates of H are in the Bloch state (we can diagonalize H and T

simultaneously), i.e.

Φk(x) = eik·xuk(x) (13)

Defining Hk(x,y) ≡ e−ikxH(p̂,x,y)eiky, the uk(x) satisfy the eq.

∫
d2yHk(p̂, ~x, ~y)uk(~y) = Ekuk(~x)

On the next section we will find a relationship between these Bloch states and the time

dependent states that arise after introducing a magnetic field.
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D. Rotating 3He-A in a magnetic field

We want to study how the excitations are modified in the presence of a magnetic field. For

this we introduce a field B with a homogeneous gradient in the ẑ direction in the rotating

frame, Bz(~x) = ~x · ~∇Bz (with ~∇Bz a constant vector). This field doesn’t couple to the

orbital angular momentum, only to spin through a Zeeman term. We can write

Lspin =
∫
d2xψ†

α(~x)(~S · ~B)αβ(~x)ψβ(~x) =
∫ d2x

2
(~x · ~∇Bz)ψ

†
α(~x)(σ3)αβψβ(~x)

Using the Nambu notation, we can write this term together with the rest of the Lagrangian

as

L =
∫
d2xΨ†(~x, t)

i∂0 −
~x · ~∇Bz

2

 Ψ(~x, t)−
∫
d2xd2yΨ†(~x, t)H(~p, ~x, ~y)Ψ(~x, t)

We want to get rid of the spin term. For this, we notice that the time derivative can now

be thought of as a covariant derivative i∂0 − ~x· ~∇B
2

= i(∂0 + iA0) with A0 = ~x· ~∇B
2

. This way,

we can make a gauge transformation so that A0 will vanish in the new gauge. We have

A0 → A0 −
∂

∂t
(t
~x · ~∇Bz

2
) = A0 −

~x · ~∇Bz

2

~A→ ~A− ~∇(t
~x · ~∇Bz

2
) = ~A− t~∇Bz

2

If we want the Lagrangian to be invariant under the transformation, the field must trans-

form like

Ψ(~x, t) → e−it(
~x·~∇Bz

2
)τ3Ψ(~x) ≡ Ψ

′
(~x, t)

Where τ3 must be introduced to be consistant with the Nambu notation. Using the

invariance of L under gauge transformations, in the new gauge we can write

L =
∫
d2xΨ

′†(~x, t)i∂0Ψ
′
(~x, t)−

∫
d2xd2yΨ

′†(~x, t)H(~p− f(t), ~x, ~y)Ψ
′
(~y, t) (14)

Where f(t) ≡ t~∇Bz

2
. We see that the in the new gauge, the Hamiltonian density operator

is modified by a time dependent vector potential, induced from the spin potential A0. The

next step is to find the eigenstates of the new time dependent Hamiltonian, for this we must

solve the time dependent Schroedinger eq.
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i
∂

∂t
Ψ(t,x) =

∫
d2yH(t,x,y)Ψ(t,x)

where H(t,x,y) ≡ H(~p− f(t), ~x, ~y). In the adiabatic approximation, the solution to the

above equation is given by (see Apendix C)

Ψk(t,x) = ei
∫ t

0
dt

′
(Ek(t

′
))+γk(t

′
)Φk(t,x) (15)

where Φk(t,x) is an instantaneous eigenstate of the hamiltonian given by

∫
d2yH(t, ~x, ~y)Φk(t, ~y) = Ek(t)Φk(t, ~x) (16)

and γk(t
′
) is called the Berry phase, given by

γk(t) = i
∫ t

0
dt

′〈Φk(t
′
)| ∂
∂t′

|Φk(t
′
)〉 = i

∫ t

0
dt

′〈uk(t
′
)| ∂
∂t′

|uk(t
′
)〉 (17)

The uk(t) are the Bloch time-dependent states, which are related to the time-independent

ones in eq. (13) by uk(t,x) = uk−f(t)(x). Thus eq. (15) tells us that the departure in time

from an initial eigenstate of the Hamiltonian is given by the usual dynamical phase plus

another phase of topological origin, the Berry phase.

E. Spin Hall effect

We know from eq. (2) that the 3He-A phase has an SO(2)S symmetry even in the

presence of a magnetic field. Using Noether’s theorem, we can write a conservation law

for the spin density, i.e., ρ̇S + ∇ · jS = 0, where the spin density ρS is defined by ρS(x) =

1
2

∑
n≤

∫
BZ

d2k
2π

Ψ†
nk(x)Ψnk(x). The label 0 denotes the zero energy (wrt. the Fermi energy).

In the presence of a uniform field f(t), the spin current is [2]

〈jS(t)〉 =
i

2

∑
n<0

∫
BZ

d2k

2π
[〈u̇nk(t)|

∂unk(t)

∂k
〉 − h.c.] = −σSxy[∇B × ez]

where

σsxy =
1

8π

∑
n<0

∫
BZ

d2k

2πi
[∇k× < uk|∇k|uk >]z =

1

8π

∑
n<0

N
(n)
Ch
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N
(n)
Ch is the Chern number for the n-th band, and if we consider the case of no partially

filled bands (We integrate over the complete Brillouin zone), it is a quantized number (See

Conclusions). This way, we see that a non-zero current means we have excitations (quasi-

particles) that carry spin with them.

III. CONCLUSION

In summary, we considered a particular phase of 3He, the phase 3He-A, which we obtained

by spontaneous symmetry breaking of a general free energy functional10 compatible with the

symmetry group of 3He determined experimentally. Once we obtained the Hamiltonian of the

3He-A phase, we modified it by introducing a rotation in the fluid. Setting up this rotation

creates vortices for a sufficiently high Ω , in particular we assumed a square vortex lattice.

By looking at the group properties of translation operators we found that the excitation

eigenstates form a band like structure. By introducing an aditional magnetic field along

the axis of rotation of the fluid, we get a conductivity that depends on the curvature of the

matrix elements of the time dependent Bloch states, which are related to the old ones by a

shift in the momenta. This conductivity turns out to be quantized11 if we sweep the whole

Brillouin zone (which is a torus), and the value is given by the Chern Number for the n-th

band.

IV. APPENDIX

A. Derivation of the order parameter

We start by writing the most general form of the free energy (Guinzburg-Landau poten-

tial) compatible with our symmetry group to 4th order in parameter. Denoting our parameter

by Aαi, where α is a spin index, i a spatial index and A a complex number, the constraints

we have are:

• U(1)ω symmetry imposes that for every Aαi there has to be an A∗
βj. This implies no

odd terms in FG−L

• SO(3)S symmetry implies that every Aαi has to be contracted with an Aαj or A∗
αj so

that it’s invariant under rotations.
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• SO(3)L Every Aαi has to be contracted with Aβi or A∗
βi for the same reasons as above

This way, the most general form of the free energy is (to 4th order):

FG−L = −αA∗
αiAαi + β1A

∗
αiA

∗
αiAβjAβj + β2A

∗
αiAαiA

∗
βjAβj + β3A

∗
αiA

∗
βiAαj Aβj +

β4A
∗
αiAβiAαjA

∗
βj + β5A

∗
αiAβiA

∗
αjAβj

We want to minimize FG−L wrt. the order parameter. We have

0 =
δFG−L

δAµν
= −α

2
A∗
µν + β1A

∗
αiA

∗
αiAµν + β2A

∗
αiAαiA

∗
µν + β3A

∗
µiA

∗
αiAαν +

β4A
∗
αnuA

∗
µiAαi + β5A

∗
αnuA

∗
αiA

µi

We see that if α < 0 (above Tc) then Aµν = 0 (All terms are positive assuming all β’s are

positive). If α > 0 then we can find nontrivial solutions. To simplify the notation, we can

write the above eq. in matrix form

0 = −α
2
A∗ + β1Tr(A

∗A†)A+ β2Tr(AA
†)A∗ + (AA†)T (β3A+ β4A

∗) + β5AA
†A∗

In general, values of A that differ by a phase transformation will represent the same

phase, because of the U(1) symmetry. There are terms with A and with A∗, which won’t

mix between themselves under a U(1) transformation, so this tells us that the A and A∗

terms represent different phases. We then set β1 = β3 = 0, which will turn out to represent

the 3He-A phase. The resulting eq for the order parameter is

−α
2

+ β2Tr(Ã) + β4Ã
T + β5Ã = 0 (18)

where [Ã]αj = [AA†]αj = AαiA
∗
ji. We try with an expression of the form

Aαi = ∆0ẑα(x̂i + iŷi) (19)

where x̂i, ŷi and ẑi are the components of the cartesian coordinate frame. Introducing

into eq. (18), we get

−α
2
δα,j + 2∆0

2β2δα,j + 2∆0
2(β4 + β5)ẑαẑj = 0
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If we choose our coordinate frame to be the same as the spin frame, then we have ẑαẑj =

δα,j. So we get

∆0
2 =

α

4(β2 + β4 + β5)

So we see that the expression in eq. (19) is valid if ẑα is pointing along one of the spin

axis. In a general basis, we’ll have

Aαi = ∆0d̂α(x̂i + iŷi) (20)

where d̂ is the spin vector and l̂ = ê1 × ê2 is the orbital angular momentum.

B. Commutator of the Translation Operators

We want to calculate

[Texa, Teya] = [eiaex·(p̂+~Aτ3), eiaex·(p̂+~Aτ3)] = [eiA, eiB] (21)

We also have

[iA, iB] = −i2ma2~Ω · (êx × êy)

Because [A, [A,B]] = [B, [A,B]] = 0, we can use the Campbell-Baker-Haussdorf formula

to write [exp(iA), exp(iB)] = exp(i(A + B))sin(1
2
[iA, iB]). We see that we must make the

sine vanish if we want the operators to commute. So

sin(
1

2
[iA, iB]) = sin(ma2Ωτ3) = τ3 sin(

ma2Ω

2
) = 0

Using the value of the lattice spacing a found below eq.10, we get the condition π = 2nπ

where n is an integer. This can’t be satisfied, so the operators in eq. (21) don’t commute.

But we see that if we make a translation by a distance d =
√

2a, which is equivalent to

enclosing 2 vortices, then the commutator will vanish. This is what we do when defining

the operators Te
′
xd

and Te
′
yd

below eq. (12).
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C. Adiabatic evolution of an eigenstate

We want to analize how the wavefunction of the system evolves in time if it starts at an

eigenstate of the instantaneous Hamiltonian. For this we follow [5]. Let H be a hamiltonian

that depends on a set of parameters R (H = H(R, ~x, ~y)). Note that in particular, the

parameter can be time itself, as it’ll be the case in our system. Let |R(t), t > represent

the wavefunction of the system for a value of the parameters R(t). Assuming that the

parameters describe a trayectory R(t) in parameter space, a guess for the wavefunction is

|Ψ(t) >= e[iγn(t)−i
∫ t

0
En(R(t

′
))dt

′
]|n,R(t) > (22)

Here we assume that the system is always in the nth state (adiabatic assumption), which

requires the Hamiltonian to be slowly varying in time (|∇Bz| << 1) (Slow variations in H

means the perturbation has low frequency components only and cannot have enough energy

to make a transition between states). Inserting this trial wavefunction into Schroedinger’s

equation, it’s straightforward to show that

γn =
∫ t

0
< n,R(t

′
)| ∂
∂t
|n,R(t

′
) >

In particular, choosing our parameter to be time itself (because H = H(t, ~x, ~y)) we get

Ψk(t,x) = e
i
∫ t

0
dt

′
(Ek(t

′
))+〈uk(t

′
)| ∂

∂t
′ |uk(t

′
)〉

where Φk(t,x) is an instantaneous eigenstate of the hamiltonian given by

∫
d2yH(t, ~x, ~y)Φk(t, ~y) = Ek(t)Φk(t, ~x) (23)
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